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Problem statement

Relevance
High-performance computing has been gaining increasing importance in both scientific
tasks and practical applications. These computations are most efficiently performed
on hybrid supercomputer systems. The development of algorithms and methods to
utilise the full power of hybrid high-performance computing systems is one of the
important task. One of the promising approach for modeling tasks is the method
of direct calculation of the density of states known as the Wang-Landau method.
This method is applicable to a wide range of problems, including polymer physics,
spin systems, and optimization tasks. Despite its widespread application (with over
3 thousand citations of the original paper [1] on Google Scholar), the method in its
original form exhibits limited accuracy. The study of the accuracy and applicability
of this method for solving problems on high-performance computational systems is
undoubtedly a important issue. Thus, this project is cross-disciplinary due to involving
the development of computation methods and the application of the approaches and
algorithms to test theoretical hypotheses in statistical physics.

Aims and tasks of the study
The aim of the study is to develops new methods for studying of computational prob-
lems of statistical physics. The objectives of the study are:

• Develop a numerical method for studying problems of statistical physics with
adjustable accuracy.

• Estimate the tunneling time and mixing time in the Wang-Landau algorithm.

• Develop a parallel algorithm with controlled precision for the Wang-Landau method.

• Apply the developed modification of the algorithm to study models of statistical
mechanics.

2



Degree of problem development

In statistical mechanics, a partition function has an important role in the study of the
properties of various systems. A partition function describes the system in the state
of thermodynamic equilibrium. For a canonical ensemble partition function is defined
as

Z =
∑
j

e−Ej/kBT (1)

where Ei = H(Xi) is Hamiltonian or energy, that describes the state of the system
in the configuration Xi; kB - Boltzmann’s constant; T - temperature. Thermody-
namic parameters of the system can be obtained from the partition function and its
derivatives. For systems with a small number of interacting particles, the partition
function can be computed analytically. However, the number of all possible config-
urations grows as 2N even for a system composed of N elements. Consequently, the
computational problem becomes extremely complex. Therefore methods for numeri-
cally approximating the partition function are used.

Such methods include Monte Carlo algorithms, which are based on various repre-
sentations of the partition function. Each representation of the partition function can
be associated with a numerical algorithm for its computation.

The canonical notation (1) of the partition function is used in the first method of
the Monte Carlo family, the Metropolis algorithm [2]. This algorithm belongs to the
class of Monte Carlo methods with Markov chains. A new state of the system Xm is
generated from the previous one Xk with transition probability that depends on the
energy difference between the initial and final states ∆Ekm = E(Xm)− E(Xk). Here
E(Xm) is the energy corresponding to the configuration Xm and E(Xk) is the energy
corresponding to the configuration Xk. The probability of transition to a new state is
determined by the Metropolis probability

P = min[1, e∆Ekm/kBT ] (2)

Multicanonical Monte-Carlo (or MuCa) is based on multicanonical representation

Z =

NE∑
k

g(Ek)W (Ek), (3)

where g(Ek) is density of states with energy Ek, W (Ek) - weight function.
The cluster representation of the partition function [3]

Z =
∑
bonds

pb(1− p)nqNc (4)

enables the introduction of the Wolff algorithm [4] and the Swendsen-Wang algorithm
[5]. Here, p = 1 − exp−J/kBT , where J is the interaction constant between system
elements; Nc is the number of clusters, and q is the number of components in the
system.
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Wang-Landau algorithm

The Wang-Landau algorithm was proposed in 2001 and is described in [1, 6]. It
provides direct computation of the density of states of a system. The algorithm is
applied to any discrete system that can be described by a finite set of configuration
states X = X1, X2, . . . , Xm. Each configuration corresponds to a different energy level
E(Xi). For such systems it is possible to pass from the summary by configurations to
the summary by energy levels in the notation of the partition function:

Z =
∑
j

e−Ej/kBT =
∑
En

g(En)e
−En/kBT , (5)

where kB - Boltzmann’s constant, T - temperature. Function g(En) is a density of
states (DoS). DoS describes the number of states with energy En. Since g(En) is
independent of temperature, this representation of the partition function makes it
possible to calculate, for example, the free energy and heat capacity at any value of
temperature

E(β) = ⟨E⟩ =
∑NE

i=0 Eig(Ei)e
−βEi∑NE

i=0 g(Ei)e−βEi
, (6)

C(β) = β2(⟨E2⟩ − ⟨E⟩2). (7)

The DoS is calculated by random walk with Wang-Landau probability over the
energy space of the system. During the walk, two histograms [1] are accumulated. The
first is the current value of the logarithm of the density of states S(E) = log(g(E)).
The second is the auxiliary histogram H(E), which contains information about the
number of visits to each energy level. At the start of the algorithm, H(E) is initialised
with zeros and S(E) with ones. The initial configuration of the system is set, and its
energy Ek is calculated. The initial value of the parameter f = exp(1) is set. Further
steps of the algorithm are arranged as follows: 1) the state of the system is changed
and the energy of the new state Em is calculated; 2) the transition from the state with
energy Ek to the state with energy Em occurs with the Wang-Landau probability:

PWL(Ek, Em) = min

(
1,

S̃(Ek)

S̃(Em)

)
, (8)

where S̃(Ek) = log(g̃(Ek)) is the current estimation of DoS. The next step is to
update the auxiliary histogram H(Ek) → H(Ek) + 1, and the current estimation
S̃(Ek) → S̃(Ek)f . Step 1 and 2 are repeated until the histogram H(Ek) is sufficiently
“flat” (e.g., at the 5% [1] level). The value of the parameter f is then updated as a
function of the square root fi =

√
fi−1, and the histogram is reset H(Ek) = 0. Steps

1 and 2 are then repeated again. The algorithm terminates when the parameter f
reaches some desired value of fend.
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Modifications of the Wang-Landau algorithm
The Wang-Landau algorithm has been widely used in various fields of science. The
method is used for modeling polymers [7, 8] and protein chains [9, 10], for optimiza-
tion [11]. However several questions regarding the performance and accuracy of the
algorithm required an explanation, such as: how to choose the optimal “flatness” value
of the histogram H(E)? How does the “flatness” requirement of the histogram H(E)
affect the final accuracy of the computation? Is the choice of the square root function
optimal for f?

The last question was answered in two independent papers [12] and [11] suggesting
a modification of the 1/t-WL algorithm and the Stochastic approximation Monte Carlo
(SAMC) algorithm.

1/t-Wang-Landau modification was proposed [12, 13]. The modified algorithm
consists of two steps. The first stage is similar to Wang-Landau steps [1] except
that the test of the histogram H(E) “flattness” was replaced with test H(E) ̸= 0.
The function F = ln f also remains the same Fi = Fi−1/2 as long as the condition
Fi ≤ NE/t is satisfied. When Fi > NE/t the algorithm proceeds to the second stage,
the histogram H(E) is no longer checked. The parameter F is updated according to
the new rule Fi = NE/t. Here, t is the number of elementary spin flips and NE is the
number of levels in the system.

The modification of SAMC [11, 14] is similar to the one described above [12, 13].
An additional parameter t0 is introduced, representing the time at which the algorithm
transitions to the second stage, measured in elementary spin flips. The parameter F
is updated as a function of F = t0

max(t,t0)
.

The convergence conditions for the function F = 1/t are formulated based on the
theory of stochastic approximation [11]

∞∑
i=0

Fi = ∞,
∞∑
i=0

F ζ
i < ∞, (9)

where ζ ∈ (1, 2). It was proven [15] that the most optimal choice of the function is
F (t) ∝ 1/tα with 1 ≤ α < 2. Moreover, the results of numerical experiments indicate
that α = 1 is the best option.

The 1/t-WL modification resolved the problem with the systematic error of the
algorithm. As the number of algorithm steps increased, the deviation from the exact
value reached a constant value. Some of the first descriptions of this problem were
provided by authors in the articles [16, 17]. The presence of a statistical error propor-
tional to the square root

√
f was demonstrated. The article [12] also demonstrated the

limited accuracy of calculations using the Ising model as an example. The deviation
ϵ(E, t) = |1− ln gn(E,t)

ln gex(E) | of the estimated value of the density of states gn(E, t) from the
exact gex(E) was calculated at different number of algorithmic steps t. The numerical
results showed the error rate reaches a constant after a certain value of the parameter
F = ln(f), and does not decrease with increasing number of algorithm steps. A simi-
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lar numerical experiment for the 1/t-WL method demonstrated that ϵ(E, t) decreases
with the number of steps proportionally to 1/t.

A review of other modifications also shows that the condition (9) imposed on F is
critical in the convergence of the method. For example, the [16] presented suggestions
regarding the importance of the “plane” of the auxiliary histogram H(E) in the accu-
racy of the computation, and proposed the idea of fixing the parameter F = 1 after
14 iterations. Numerical experiments have demonstrated that this approach gives a
meaningful improvement in accuracy only at the early steps of the algorithm compared
to the original [1] method; however, as the number of steps increases, the algorithm
does not give a significant improvement.

The frequency of updating the values of g(E) is also not a critical factor in the
accuracy of computations. In the article [18], the authors propose reducing the fre-
quency of updating the values of g(E) in the Wang-Landau algorithm from every
spin flip to every Monte Carlo step, i.e., updating g(E) after every L2 elementary
spin flips. The performance of this approach is compared with the original Wang-
Landau algorithm with histogram flatness levels H(E) of 80% and 90%, as well as
with the 1/t-modification. Based on the comparison of the results of calculations of
three characteristics of the system, specifically the temperature of the maximum heat
capacity Tc and the critical indices β and γ, the authors conclude the accuracy of the
Wang-Landau algorithm is improved when the density of states is updated more rarely
compared to the original algorithm and the 1/t-WL modification. However, this ap-
proach requires several times more CPU time. For example, if we compare the results
obtained with the 1/t-WL algorithm with the stopping criterion ln f = 5 · 10−8 and
the proposed modification (Tc = 2.26916(12), β = 0.1259(21) and Tc = 2.26904(25),
β = 0.12494(68), respectively). then the latter takes about 7 times longer [18].

Two characteristic times of the Wang-Landau algorithm
There are two characteristic times in the Wang-Landau algorithm, which are tunneling
time and mixing time.

Tunneling time is related to the initial stage of the 1/t-WL algorithm, and is a
characteristic time for algorithms that require the histogram [19] criterion of "flatness".
This time is also known as first-passage time [20]. In terms of the Wang-Landau
method, this is the time for which the algorithm reaches the level with maximum
energy Emax, starting from the minimum Emin, for the first time. It is known that for
random walk, the tunneling time scales as ttun ≈ N 2

E [20], i.e., for a two-dimensional
Ising model with lattice size L, it is ttun ≈ L4. An estimation of this time for the
Wang-Landau algorithm for the Ising model is given in [19].

In the final stage of the algorithm, the estimation of g̃(E) is in the vicinity of the
exact value of g(E), and the steps of the algorithm are a Markov random walk over the
energy spectrum. The time in which the Markov process converges to an equilibrium
state is called the mixing time tmix. It is known that this time is inversely proportional
to the spectral gap G, defined by the difference between the higher eigenvalues of the
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transition matrix [35]

tmix =
1

G
=

1

λ1 − λ2
. (10)

Estimation of this time for the Wang-Landau algorithm has not been done before.

Parallel implementations of the Wang-Landau algorithm
Among the existing approaches to the realization of the parallel Wang-Landau algo-
rithm, two groups can be distinguished:

• Algorithms where random walks are performed across the entire spectrum and
shared or distributed memory is used [21–23].

• Algorithms where the energy spectrum is divided into segments, and independent
random walks are conducted in each segment using distributed memory [24] - [33].

We will further examine the proposed implementations of both approaches.

Random walks across the entire energy spectrum.

Let us start with the case when several random walks are performed over the en-
tire energy spectrum. There are implementations of this approach for systems with
distributed memory using MPI [21] and for shared memory using OpenMP [22].

In case of MPI [21] distributed memory, a specific time interval is set for commu-
nication between independent random walks to update the collective DoS value. An
aggregated histogram across all walks is used to assess the histogram’s flatness. De-
termining the optimal time interval for information exchange between walks is a weak
point of this approach, as it could lead to computational inefficiency.

The implementation of the algorithm using OpenMP [22] is organized as follows:
multiple copies of the system are created, each corresponding to its own initial state of
the random number generator. Within each copy, standard WL (Wang-Landau) steps
are executed, involving the reading and modification of the state density g(E) and the
flatness histogram H(E). These entities are shared and writable by each copy. The
histogram H(E) flatness checking step is also performed by all processes; however,
the permission to modify the F parameter is granted only to the processor where the
flatness condition is met with a certain accuracy. Afterward, the F parameter becomes
readable to all processes.

This approach to parallelization of the algorithm is quite simple, as it doesn’t re-
quire rewriting the entire algorithm’s logic and instead involves adding directives defin-
ing the work with shared memory. Specifically, to establish the order of operations on
g(E) and H(E) and avoid premature overwriting of their values, ATOMIC or CRIT-
ICAL directives are used. As the experiments of the authors of [22] have shown, the
CRITICAL directive slows down the algorithm to a point where its performance lags
behind a regular sequential implementation. On the other hand, using the ATOMIC
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directive results in speed improvements for the parallel implementation. However, the
assumption of premature overwriting of common elements gives the most time-efficient
implementation. The lost values of g(E) and H(E) due to premature overwriting are
compensated for by additional algorithm steps, which require less time than waiting
in the queue for updates the DoS value and the H(E) histogram. According to the
authors, this approach doesn’t lead to a loss of accuracy. However, as it is shown in
[23] this may be true only for some models and doesn’t guarantee the convergence of
the density of states to the accurate solution. This is due to the fact that while all
energy levels are equally probable, the likelihood of visiting those levels is not equal.
Some of the parallel random walks “get stuck” at low energy levels, and contribute to
the overall histogram H(E) shared among all walks. However, they do not traverse
the entire spectrum properly, thereby overestimating the low-energy levels. A solution
could be a stricter “levelness” criterion, which in turn increases the running time of the
algorithm and loses the advantage of a parallel implementation over a sequential one.
Therefore, to solve this problem, the authors propose to use a non-uniform parameter
f : the less likely a level is to be visited, the higher the value of parameter f is used to
adjust the current DoS.

Random walks across segments of the energy spectrum

In 2013, T. Vogel and colleagues [24–26] introduced a parallel implementation of the
Wang-Landau algorithm by dividing the energy spectrum into overlapping segments
that can exchange configurations with each other.

The concept of exchanging configurations is borrowed from the Replica Exchange
Monte Carlo algorithm [27], where multiple copies of a single system are simulated in
parallel at different temperatures. Periodically, configurations are exchanged between
replicas, so that replicas with low temperature receive the configurations of the system
with high temperatures and vice versa. This approach helps overcome the issue of
getting trapped in local minimum at low temperatures and increase the accuracy of
calculating thermodynamic properties of the system [28]. The independent nature
of simulating each replica allows for scalability on high-performance clusters, and it
provides system characteristics across a specified temperature range.

In the proposed Replica Exchange Wang-Landau algorithm (REWL) by Vogel [24,
25], the energy spectrum is divided into h overlapping intervals. Within each of these
h intervals, m independent random walks are conducted using the classical Wang-
Landau algorithm. Consequently, the density of states g(E) and the flatness histogram
H(E) are computed independently. After a certain number of steps, configurations
are exchanged between two random walks from neighboring windows with probability
satisfying the detailed equilibrium principle, denoted as Pacc:

Pacc = min[1,
gi(E(X))

gi(E(Y ))

gj(E(Y ))

gj(E(X))
] (11)

i and j are randomly selected random walks from neighboring intervals, X and Y are

8



their corresponding configurations at a given time, E(X) and E(Y ) are the energy of
the system with configuration X and Y .

It’s important to pay attention to the choice of the overlap fraction o between
the intervals h. The value of o should be chosen to avoid two extremes. On one
hand, a high overlap fraction would be ineffective as it would result in conducting
multiple walks almost across the entire energy spectrum. In such a case, parallelizing
the algorithm would lose its purpose. On the other hand, an excessively small overlap
fraction wouldn’t provide a sufficient level of probability for exchanging configurations
between windows. The authors of the algorithm suggest selecting the overlap fraction
at the level of 75% [25, 26, 32, 33].
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The scientific novelty of the study

1. A new mathematical object was introduced for the Wang-Landau method - the
transition matrix across the discrete energy spectrum.

2. It has been analytically and numerically demonstrated that the transition matrix
converges to a stochastic matrix when the required accuracy in calculating the
density of states is achieved.

3. A criterion for the accuracy of calculation of density of states has been proposed
as the deviation of the largest eigenvalue of the transition matrix from unity.

4. A method for estimating the scaling of density of states calculations is proposed.
The concept of mixing time has been introduced as an estimate of the scalability
of computation time.

5. A parallel modification with controlled accuracy for the Wang-Landau method
was introduced.

6. The developed technique is applied to the study of the four-component Potts model
on a hexagonal lattice, resolving the discussion about referring this model to the
universality class of the four-component Potts model.
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Summary

In the first chapter, the modification of the 1/t-Wang-Landau algorithm is discussed
by introducing a transition matrix between energy levels with the Wang-Landau prob-
ability.

The auxiliary function H(E) in the Wang-Landau algorithm accumulates informa-
tion about the number of visits to each energy level, however, this function does not
represent information about the energy levels between which the transition was made.
An additional function U(Ek, Em) was introduced in the algorithm. It is a square ma-
trix of size NE ×NE, where NE is the number of energy levels in the system. At the
start of the algorithm, the matrix is initialized with zeros. During the random walk,
when we move from energy level Ek to energy level Em, the corresponding matrix
element increases by one U(Ek, Em) → U(Ek, Em) + 1. We also compute the nor-
malized matrix T (Ek, Em) = U(Ek, Em)/H, where H =

∑
k,m U(Ek, Em)/NE. The

simulation results show that as the algorithm converges to the exact value of g(E), the
normalized matrix T (Ek, Em) tends to become stochastic, i.e., the sum of its elements
on both columns and rows is close to unity. Correspondingly, its largest eigenvalue
tends to λ1 → 1 [34].

The analytical solution of the matrix was obtained for the one-dimensional Ising
model with periodic boundary conditions. It was shown that the matrix elements
are probabilities of transition from level Ek to level Em and the total probability is
composed of two factors

T (Ek, Em) = min

(
1,

g(Ek)

g(Em)

)
P (Ek, Em). (12)

The first component is the Wang-Landau probability PWL to move from one energy
level to another. P (Ek, Em) is the probability of transition from the configuration of
the system with energy Ek to the configuration of the system with energy Em. The
complete system of expressions for the non-diagonal elements of the matrix T (Ek, Em):

T (Ek, Em) = min

(
1,

g(Ek)

g(Em)

) 2k∑
i=0

Ni(k, L)Q
Ek→Em

i

g(Ek)
,

Ni(k, L) =
L

k
C i

2k−iC
2k−i−1
L−2k−1,

N2k(k, L) = 2δL,2k,

Q
Ek→Ek−1

i =
i

L
,

Q
Ek→Ek+1

i =
L− 4k + i

L
,

QEk→Ek

i =
4k − 2i

L
,

g(Ek) = 2C2k
L .

(13)
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The analytical solution based on the exact value of DoS also confirms that the
sum of elements in both rows and columns is equal to one. Based on this property, we
propose a control of the accuracy of the algorithm as difference of the largest eigenvalue
of the transition matrix in the energy space from unity

δ = |1− λ|. (14)

It was demonstrated that with an exact value of g(E), the Wang-Landau algorithm
becomes a Markov process.

In second chapter the estimation of characteristic times of the modified algorithm
is analyzed and the methodology of their calculation is given. The tunneling time has
been estimated using a two-dimensional Ising model with periodic boundary conditions
as an example. It was found that this time scales with increasing system size as
ttun = L=4.743(7).

Since the implementation of the transition matrix into the algorithm, it became pos-
sible to estimate the characteristic time for the second stage of the 1/t-WL algorithm.
It is known that this time is inversely proportional to the difference between the largest
eigenvalues of the transition matrix: tmix =

1
|λ1−λ2| [35]. For the one-dimensional Ising

model, the elements of the matrix T (Ek, Em) are known (see equation 13). It was
determined that tmix = L2.19. For the two-dimensional Ising model, the exact solution
of the matrix is unknown. Therefore, Wang-Landau random walks were run with an
initially given exact value of g(E) (computed with [36]). g(E) was kept unchanged
while the transition matrix U(Ek, Em) had been accumulated during the algorithm.
The normalized matrix T̃ (Ek, Em) was used to compute the eigenvalues. It was found
that the mixing time grows as tmix = L4.28(4) for the two-dimensional Ising model.

Tunneling and mixing times were also found for the q-component Potts model, and
the results are shown in Table . For the estimation of mixing time, first the g̃(E)
estimate was found using the 1/t-WL algorithm with transition matrices, then the
algorithm steps were run with g̃(E) as initial values.

q ttun tmix

3 5.(3) 3.(3)
4 4.9(4) 3.(3)
5 4.7(2) 1.(7)
8 4.(9) 1.7(6)
10 4.8(1) 1.(3)

Table 1: Tunneling and mixing times of the Wang-Landau algorithm for the Potts
model on a square lattice with different numbers of q components.

In the third chapter, an efficient implementation approach for the parallel Wang-
Landau algorithm is discussed. The modification is based on the concept of random
walks across segments (windows) of the energy spectrum, which intersect with each
other at a certain overlap fraction o%. Within each window, in addition to functions
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g(E) and H(E), a transition matrix T̃ (Ek, Em) is accumulated. Periodically, the values
of the DoS for the entire spectrum are updated using the formula: Gi =

1
k

∑k
j=0 g

j(Ei),
where k is the number of windows where the energy level Ei appears, and gj(Ei) is
the accumulated DoS value of the energy level Ei in window j. Simulation results
demonstrated that both for the entire energy spectrum and for the windows, the
condition of convergence of the matrix to a stochastic one holds. Within each window,
as the number of steps t increases, the largest eigenvalue tends to approach unity.
Within each window, tunneling time was calculated in two ways: based on a uniform
distribution (g(Ei) = 1) and based on the exact value (g(Ei) = gexact(Ei)) [36]. In both
cases we estimated tunneling time starting from left edge of the window and ending
on the right, and vice versa. The results shed light on the characteristics of tunneling
time distribution within spectrum windows at the initial stages of the algorithm and
on its final stage. By using the example of calculating the heat capacity C(β) for the
Ising model and its relative error, we demonstrated that the proposed approach for
computing the density of states is simpler to implement compared to the one suggested
earlier in [24], while still providing sufficient computational accuracy.

The fourth chapter presents the results of applying the modified method to
solve problems in statistical physics. It’s known that the Potts model on a square
lattice with a number of components q > 4 exhibits a first-order phase transition,
whereas for q ≤ 4, it’s a second-order transition. The motivation for this study
arises from several publications (e.g., [37]) that claim the existence of a first-order
phase transition in the four-component Potts model on a hexagonal lattice. This
contradicts the universality theory [38], which states that the type of phase transition
is unaffected by local configurations, but is influenced by the dimensionality of the
system and its Hamiltonian. By employing the modified 1/t - Wang-Landau method
with criterion accuracy as δ = |1 − λ1|, we calculated the density of states g(E) for
the four-component Potts model on a hexagonal lattice. Using g(E), functions of
temperature β such as energy E(β), heat capacity C(β), and Binder cumulant BE(β)
were calculated using the formulas

E(β) = ⟨E⟩ =
∑NE

i=0Eig(Ei)e
−βEi∑NE

i=0 g(Ei)e−βEi

, (15)

⟨E2⟩ =
∑NE

i=0E
2
i g(Ei)e

−βEi∑NE

i=0 g(Ei)e−βEi

, (16)

C(β) = β2(⟨E2⟩ − ⟨E⟩2), (17)

BE(β) = 1− ⟨E4⟩
3⟨E2⟩2

(18)

It is a widely recognized fact that models belonging to this universality class display
specific heat with multiplicative logarithmic corrections. The the result of approxima-
tion of the numerical data of the maximum specific heat is in good agreement with
the analytical value [39]. The analysis results demonstrate that the Potts model with
q = 4 components on a hexagonal lattice are consistent with the universality theory.
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Thesis statements for defending

• A new element of the Wang-Landau method is introduced - the transition matrix
over a discrete energy space. It has been demonstrated that the matrix tends to
become stochastic as density of states calculations approach the exact value.

• An approach has been developed to control the accuracy of calculating the density
of states in the Wang-Landau algorithm.

• For the first time, the characteristic time in the Wang-Landau algorithm, the
mixing time, has been estimated.

• A parallel implementation of the Wang-Landau algorithm with adjustable accu-
racy is proposed. In addition, a simpler algorithmic method for combining the
density of states over the entire spectrum is proposed.

• The developed method is used to determine the nature of the phase transition in
the four-component Potts model on a hexagonal lattice.

Personal contribution of the author
The ideas and hypotheses discussed in the dissertation were developed jointly with the
supervisor. The dissertation author personally developed the software code, conducted
computational experiments, and writing the text of the articles.
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General findings of the study

• The transition matrix of random walk with the Wang-Landau probability was
introduced. The frequency of transitions from states with one energy to a state
with another energy is accumulated. Expressions for the transition matrix for
the one-dimensional Ising model with periodic boundary conditions are obtained
analytically. It is shown that the matrix elements are transition probabilities from
the level Em to Ek, and the transition probability consists of two components: 1)
the Wang-Landau transition probability Pwl = min

(
1, g(Em)

g(Ek)

)
; 2) the probabilities

of being at a given energy level. It was shown that the normalized matrix tends
to be stochastic as the number of simulation steps increases, respectively, the
largest eigenvalue a matrix tends to unity λ1 → 1. Based on this property, we
propose an accuracy criterion as the difference of the largest eigenvalue from unity:
δ = |λ1 − 1|.

• Mixing time and tunneling time of the Wang-Landau algorithm were estimated.
A dependence between the system size and the tunneling time was found. An
estimation of the mixing time for the Ising model is done using the spectral gap
G = |λ1−λ2| of the transition matrix with Wang-Landau probability. The mixing
time tmix = 1/G, is an estimation of the characteristic time in the final stage of
the 1/t Wang-Landau algorithm.

• A parallel implementation of the Wang-Landau algorithm is proposed. It’s based
on the transition matrix and a more simplified approach to combine the density of
states of the entire spectrum. It is shown that the transition matrices within each
window also tends to become stochastic like the transition matrix in a sequential
realization. A new approach to computing the density of states of the entire
spectrum from parallel windows is proposed. It is demonstrated that the new
approach allows to compute thermodynamic functions of the system without loss
of accuracy while reducing the computation time.
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Approbation of the results

The work underwent approbation at the following conferences:

• The study of phase transitions in the Potts model by the Wang-Landau method,
Russian Supercomputing Days, 27-28 of September, 2021

• On phase transition in four-component hexagonal lattice Potts model, CSP2020,
October 12-16 , 2020

• Analytical structure of transition matrix in Wang-Landau algorithm, International
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